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Abstract

The failure of Hume's 'constant conjunction' to describe apparently causal
relations in science and everyday life has led to various 'probabilistic' theories of
causation of which (Suppes 1970) is an important example. A formal model that
was developed for the analysis of comparative agricultural experiments in the
first quarter of this century can be used to give an alternative account of
'probabilistic causality' that does not take a stand as to the stochastic or
deterministic nature of the causal connection. The approach has many
applications in social, behavioral and medical science. This paper discusses the
formal model in detail, applies it to 'probabilistic causation' and compares the
resulting theory to Suppes' theory.
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Probabilistic Causation Without Probability

Paul W. Holland
June 25, 1992

. . in restricting himself to the concept of
constant conjunction, Hume was not fair to the
use of causal notions in ordinary language and
experience. (Suppes 1970, p. 10)

1. Introduction
As Suppes observes, Hume's condition of constant conjunction may not

square well with experience. In practice, the billiard ball analogy is not apt in

many cases where causal language seems natural. The use of a medical
procedure may often give the intended result, but not always. Cigarette

smoking may be associated with an increased risk of lung cancer, but not all

smokers get lung cancer and there are victims of lung cancer who never

smoked. In many cases in everyday life and in the the less 'exact' sciences,

when we use causal language the connection between cause and effect is

noisy and uncertain--not at all like the crisp click of one billiard ball striking

the next. This state of affairs has led to various theories of probabilistic

causation, e.g., (Good 1961, 1962), (Granger 1969), (Suppes 1970), also

reviewed in (Skyrms 1988).

In this paper I show how a formal model developed early in this century by

statisticians to provide a detailed analysis of the structure of 'comparative
experiments' leads very naturally to a 'probability-free' account of probabilistic

causation that is quite different from these other theories but which can
accomplish many of their goals. My intent is to make this material accessible to

philosophers of science. Here, I give an uncluttered description of the formal
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model of experiments in the simplest case and then use it to develop a theory of

probabilistic causation in which 'probability' plays a limited role. I then compare

this approach to Suppes' probabilistic theory of causality to illustrate their
differences.

I believe that the formal model for experiments has many other potential uses

in philosophical analyses of causation and related topics. I concentrate on
probabilistic causality here because of Suppes' work on this subject and in the

hope that such an introduction might catch the interest of other philosophers of

science. Indeed, if the review in (Tiles 1992) is an indication of the role that

'experiments' currently play in philosophical discussions, then the time may be

ripe to introduce a useful formal model into the debates. For discussions of the

relation of the formal model to 'causal modeling' in the social sciences and to

the views of various philosophers see (Sobel 1990, 1992).

After covering some basic terminology, I then describe the formal model in

some detail before relating it to probabilistic causation and the theory of Suppes.

The modern statistical theory of comparative experiments was developed

during the first quarter of this century in response to the needs of agricultural

experimentation, and quickly spread to many other disciplines. Key to the failure

of older experimental methods was the attempt to take them out of the lab and

apply them to problems where there is a substantial amount of 'uncontrollable

variation' in the material being studied (such as the effects of the weather in

agricultural field experiments). The new statistical methods deal explicitly with

uncontrolled variation, and, thus, breathed new life into experimental research.

Basic terminology: The three key terms used to describe experiments are
treatments, units, and 21..tsalAne . In a comparative experiment each
experimental unit is exposed to one element of a set of treatments and then,

some time after this exposure to a treatment, an outcome is observed for each

unit. Comparative experiments get their name from the fact that they are used

to compare the outcomes of treatments on units.
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For example, in a medical experiment (often called a clinical trial) the units

are patients of various types and the treatments are new (and old) drug
therapies, or various surgical or other medical procedures (including various

combinations of medical procedures). In a medical experiment, there are a
variety of outcomes of potential interest, e.g., survival status for five years after

the therapy, or degree of improvement in some physical activity or in some

measure of health. In an educational experiment, the units might be classrooms

of elementary school children (instead of individual students), the treatments

could be various educational programs for teaching mathematics to whole
classrooms of students, and the outcomes might be classroom averages on tests

of performance in certain areas of mathematics. (This example illustrates that

the units are part of the definition of the experiment and not inherently individual

objects or people).

The process of assigning each unit to one of the treatments is called the
assignment process of the experiment. Random assignment employs a
randomizing mechanism to assign the treatments to the units. Historically,

randomization was not the first assignment process used. ay.s.11L__natic assignment

processes were used in the earliest agricultural experiments in which, for
example, alternating contiguous plots of land (the units) were given different

amounts of fertilizer (the treatments). Random assignment is regarded by many

practitioners as a great invention in experimental science when there is
uncontrolled variation in the material under study. Some reasons for this are

discussed in section 2.

R. A. Fisher, who made many contributions to the development of modern

statistics and especially to the application of randomized comparative
experiments in agriculture and biological science, identified three important

principles to be observed in the design of any comparative experiment. These

are randomization, milicAtiat and blocking,. I have already described
randomization. Replication means that more than one unit should be exposed to

5



each treatment. (This can involve many technical issues and further discussion

of it is beyond the scope of this paper.) In blocking, we use observed
information about the units to group them into homogeneous subsets (the blocks)

and then assign the treatments to units within each of these blocks. For
example, we might group all the men in one block and all the women in another

block. In a complete. randomized block design there are as many units in each

block as there are treatments under study and each unit within a block is
randomly assigned a treatment that is different from those assigned to any other

unit in that block. For example, in comparing the wear on two types of shoe

leather, the 'units' might be feet and the 'blocks' people. A person would then

have the two types of shoe leather randomly assigned to his or her left and right

soles.

The idea behind blocking is adapted from those branches of experimental

science in which it is possible to take seriously the idea of distinct-but-identical

samples of experimental material for study (the units). For example, in a
chemistry laboratory it is often possible to create samples of chemicals that are

very nearly identical in purity, volume, mass, etc. When distinct-but-identical

units are available for study, the effects of treatments can be studied easily by

assigning the different samples to different treatments.

The idea of distinct-but-identical units arises later in my discussion. The point

of mentioning it here is to forewarn the reader that although this notion may be a

helpful crutch for thinking about experimentation, and it even has a role to play

in modern experimental design through blocking, the idea of distinct-but-identical

units has no essential role in the theory discussed here, even though it can be

expressed within the model as the special case of 'unit homogeneity'.

With this dash through the terminology of comparative experiments I now

turn to the formal model that is used to describe them. This model is implicit in

the earliest work on comparative experiments, described in (Fisher 1925). It



was first explicitly developed to analyze the behavior of statistical procedures in

Neyman's 1923 doctoral dissertation in Polish, translated and republished
posthumously in (Neyman 1990), and was first published in English in an

influential paper, (Neyman 1935). It is standard material in those books on

experimental design that go into the details of 'permutation' or 'randomization'

tests, such as (Kempthorne 1952) or (Cox 1958). However, in all of these early

references it is presented purely as a technical tool and applied only to
randomized experiments. Its importance for the analysis of non-experimental

studies and to causal inference more generally was first pointed out in (Rubin

1974) and was developed extensively in (Rubin 1977, 1978). In (Holland 1986) I

call it aubin's model for causal inference' and emphasize its importance as a

general tool for studying the relationship between statistics and causal inference.

Here I will call it simply 'the model for experiments'.

2. The Formal Model
At first glance, the model does not look like the types of things that are

usually called 'statistical models'. In particular, at least to begin with, there is no

role for probability. This is because this model is intended to be applicable to all

types of comparative experiments, even those 'deterministic' cases in which the

variation across the units can be well controlled.

We need notation for the three basic elements: units, treatments, and
outcomes. The units are indexed by the letter i, i.e., 'unit i', and i ranges over

a set (or population) of units, U. The treatments are indicated by labels

denoted by the letter t, and t ranges over a (finite) set of possible treatments,

T. T must contain at least two treatments or there is nothing to compare (i.e.,

'experiments' with only one treatment are not comparative experiments in the

sense used here and might better be called 'measurements' or 'controlled

observations'). The case of an infinite number of treatments is possible--e.g.,

doses of a drug--but is not discussed here. Later, I simplify to the case where T
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consists of only two treatments, t the new treatment, and c the control
treatment.

So far so good. Now comes the hard part in the sense that we need to
define quantities that do not 'exist' according to some critics of this approach,

e.g., (Lund 1991).

In a comparative experiment, each unit could be exposed to any one of the

treawients in T and the outcome resulting from that exposure could then be
observed. Thus, before setting up notation for the outcome that is actually

observed for unit i , I add to U and T notation for all the potential outcomes

that could be observed for unit i (also depending on potential exposure to
treatment t in 7). Thus, for every pair (i, t), combining a unit and a treatment,

define Yit as

Yit = the outcome that would be observed for unit i if it were exposed to
treatment t.

I assume that Yit is a real number for each combination of i and t. This is not

essential, but it makes things go smoothly and agrees with standard discussions

of experimental design. Thus, Y is a real-valued function defined on the
Cartesian product, U x T.

Statisticians are interested in data, but so far there is no data or at least no

notation for it. We need to remedy this. It takes two steps. First we need
notation for the treatment to which unit i is actually exposed. This is denoted by

xi

xi = the treatment to which unit i is exposed in the experiment.

Formally, x is a mapping from U to T. This gives us part of the data.

Next, we need to define the outcome that is actually observed for unit i in

terms of what has been defined so far. We denote the outcome observed for unit

8
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i by yi and define yi in terms of Yit and xi as follows,

yi (1)

so that yi is equal to Yit if and only if xi= t. Hence, the data that is observed

in this comparative experiment is ((yi, xi), for i in U ). I use the notational

device of denoting the observed data, (yi, x), by lower case letters and
potential observations, Yit , by upper case letters.

Finally, we need to define the relative effects of the treatments on each unit.

These are called the unit-level causal effects, or just the causal effects for short.

For unit i, the causal effect on the outcome Y of treatment ti relative to
treatment t2 is the difference

1' - Y.It2 (2)

In the earlier statistical literature, the causal effects are called 'treatment
effects'. The term 'causal effect' was introduced in (Rubin 1974) to emphasize

that they are the basic quantities of interest in all problems of causal inference,

and I follow his terminology. Thus in terms of this model, causal inference

means inferring something about the causal effects.

In summary, the formal model is the quadruple (U, T, Y, x) where U and T

are (finite) sets, Y is a real-valued mapping from U x T and x is a mapping

from U to T. The observed response, yi , is the real-valued mapping from U

defined by (1). The causal effects are the quantities defined in (2) and they are

the items of ultimate interest in causal inference.

Having set up this formal mode! and these definitions, I now mention several

important points.

First, because it is impossible to apply two different treatments at the same

time to a single unit, it is impossible in principle to observe both Yiti and Yit2 .

Thus, the unit-level causal effects cannot be dirgetly_ observed. I call this the
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Fundamental Problem of CauLaliatuftt_Ice because if we could observe both

Y. and Y1./2 for all i, t1, and t2 then we would know the relative effects of allIt/

the treatments on each unit, that is we could infer everything about the causal

effects.

Second, the causal parameters, i.e., the causal effects, are defined
independently of the way that the data are collected, i.e., the way that x is
constructed. This allows a complete separation between the targets of our
inferences (the causal effects) and our ability to make sound inferences about

them (the experimental design). This separation is very important and not

always made.

Third, it is important to separate the model, (U, T, Y, x ), from its application

to a real situation. The model is an ideal case. Applying it to a real situation

requires identifying the elements of the model with corresponding elements of

the real situation. This correspondence may be imperfect in various ways (see

points four and five, below). Deductive analysis takes place within the model. To

the extent that the correspondence between the model and the real situation is

faithful, these deductions can then carry over to the real situation. I give some

examples of these deductions in sections 2, 3 and 4. Criticisms of the model

have to do with its logical structure or with the logic of the deductions made

from it. Criticisms of an application of the model have to do with the faithfulness

of the correspondence between the elements of the model and those of the real

situation. It is useful to distinguish between these two types of criticisms.

Fourth, an important assumption, that is implicit in any application of the

model to a real situation, goes by a variety of names including 'non-interfering'

units. When units interfere with each other, the outcome for one unit can depend

not only on the treatment that the unit is exposed to, but also on the treatments

received by some or all of the other units. For example, if the units are people in

a theatre watching a play, the treatments are to stand up or to sit down, and the
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outcome is the clarity of one's view of center stage, then the outcome for me

depends on what I choose to do (my own self-imposed treatment) but also on

wh t all those in front of me al o choose to do (their self-imposed treatments).

Interfering economic units are the sine qua non of micro-economic analysis.

Interfering units can occur in agricultural experiments when the rain causes

runoff of fertilizer from one plot of land to the next. When units interfere with

each other, a more complex model is required than the one discussed here, but

many of the same ideas are useful in that case, too. This point is discussed more

extensively in (Rubin 1980, 1986, and 1990b) under the topic he calls the stable-

unit-treatment-value assumption, or SUTVA.

Fifth, there are two assumptions about the set T and the actual 'treatments'

in a real experiment that should be mentioned. The first is that the elements of

T are sufficient to distinguish between the treatments that are actually applied

in the experiment. This can become a serious issue. For example, if T contains

only two elements, say t (the new treatment) and c (the control treatment)

and in actual fact there are several versions of t and of c used in the
experiment, then classifying them all as either t or c may be misleading. In

(Neyman 1935), 'errors of experimental technique' are discussed in which
treatments labeled the same way by elements of T are not really exactly the

'same' treatment. This leads to a more complex model than the one discussed

here. A second assumption about T is that it is actually possible in the real

experiment to expose any unit in U to any treatment in T. This assumption

often creates apparent conceptual difficulties in applying this model to non-

experimental studies where there is no real control over which units are
exposed to which treatments.

Sixth, in medical and other types of studies that involve human subjects,

ethical questions arise in which it may be ethically inappropriate to expose some

subjects to some of the treatments in T. Some patients might be too sick to

undergo surgery, but could undergo some form of drug therapy. Or, a physician
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may believe that a given patient would benefit more from treatment t than from

treatment c. When this happens, the mapping x is restricted. This in turn can

restrict the types of conclusions that are possible. The question of ethics in

medical research can force a trade-off between the treatments a patient can

receive and the type of conclusions that can be reached by the study. It is
exacerbated when the physician does not really know which treatment the

patient ought to receive (because this requires a solution to the fundamental

problem of causal inference) but has strong opinions about the matter anyway.

(Kadane and Seidenfeld 1990) discuss methods for designing clinical trials that

allow some 'ethical' restrictions on x .

Finally, and for my purposes here, most importantly, the model assumes

nothing about how t acts on i to result in the value Yit . The only assumption

made in using the model is that if i were exposed to t, then some value of the

outcome, denoted by Yit, would be observed, i.e., we know exactly how to
ascertain the value of Yit. The relationship between i, t and Y is that of a
mathematical function (i.e., Y is a function of i and t), but without any
specification of the form of this functional relationship. This might appear to be a

bit unstatistical in the sense that there is no assumption that there is a stochastic

component to the relationship between the pair (i, t) and Y, i.e., at this stage

Yit is not represented by a probability distribution and is not a random variable.

There are two reasons for this lack of probabilism. The first is that it is
unnecessary-- Yit simply denotes a value that would be observed under some

conditions of the experiment. It does not need to be tholght of as having any

sort of random or stochastic element in its generation. In fact, we are entirely

agnostic about how the value, Yit, comes about. The second is that probability

considerations come later in this development for very specific purposes. We

will get to probability, but not yet.

Connections to causation: At this point, it may be helpful to connect this
formal model to ordinary causal talk. The treatments, indexed by the elements of

12



T , are the causes, and the effects are the relative causal effects defined in (2).

The effect of a cause is, therefore, always relative to another cause. Outcomes

are not effects, but are intermediate to the definition of effects. Sometimes the

distinction between outcomes and effects is blurred when the cause is being

compared implicitly rather than explicitly to another treatment (e.g., "my
headache went away because I took an aspirin an hour ago"). I think that the

confusion of outcomes with effects is a source of many problems in the analysis

of causation.

The 'mechanisms' that lead from cause to effect play no role in this
discussion and for this reason I argue that this theory is about measuring the

effects of causes rather than about iskniliying_lhg_sullsts_Df_e_gas or the
mechanisms that lead from cause to effect. By taking units, causes and
outcomes as the primitive, undefined terms of the model and defining effects and

the observed data in terms of them, this approach breaks with the philosophical

tradition of taking events as the primitives and attempting to explicate the nature

of causation in terms of them.

The notation for the potential observations, Yit, is related to Hume's
conditions of 'temporal succession' and of 'spatial and temporal contiguity'. In

indicating that Y is a function of both i and t, the unit i becomes the point of

spatial (and, to some extent, temporal) contiguity between t and 1'--the
treatment acts on the unit and the outcome is measured on it as well. Similarly,

the notation, Yit, indicates that i and t combine in some way to produce the

value of Y thus insuring the temporal succession of the cause, t, and the
outcome, Y. The model for experiments is consistent in many ways with
Hume's classic analysis of causation, but it does not insist on 'constant
conjunction'--see section 3.

Causal models versus experimental design: In terms of the quadruple
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(U, T, x), a causal model is any restriction or assumption that we make
about the function Y, whereas, assumptions about U,T and x are parts of
the experimental design. A reoccurring theme in the development of statistical

methods for experiments is the replacement of causal models (i.e., assumptions)

by elements of experimental design (i.e., actions under the control of the
experimenter). It should be noted that causal models are assumptions that
cannot always be tested directly using the data from the experiment, i.e., ayi,

xi) for i in Uj. However, these assumptions allow us to draw conclusions

about Y from the data. This gives us information about the unobserved values

of Y and this information, in turn, can allow us to describe the causal effects,

i.e., allow us to make causal inferences. Two simple causal models arise often

enough that I will discuss them briefly, next.

Unit homogeneity: It is sometimes useful to make the assumption that the
value of Yit does not depend on the unit i, i.e., the units are homogeneous in
their reactions to the various treatments in T. This may be a believable
assumption in those branches of science in which it is possible to prepare
distinct-but-identical units, i.e., 'identical' samples of material for study in the

experiment. There is always a pragmatic element in regarding two distinct

things as being 'identical'. They are not identical in all respects, but only in some

respects. We might be willing to assume that all electrons are identical, but that

is because 'electrons' are one consequence of a long effort to find the
fundamental constituents of matter that are, by definition, identical in some

ways. It is wise to remember just how tentative such notions of 'identical' are in

the history of physical science. Certainly when we turn to the social and
biological sciences, the idea of distinct-but-identical units is a much less useful

idea. In these branches of science, units differ in many ways only some of which

we know about. This is the 'uncontrolled variation' mentioned above.

Regardless of its general tenability, if one can assume that the units are

homogeneous then this assumption may be expressed in terms of Y as:
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Yit = Yt , for all t in T. (3)

Under the assumption of unit homogeneity in (3), the fundamental problem of

causal inference mentioned earlier is easily avoided. We need only expose unit 1

to treatment t1, unit 2 to treatment t2, etc., until we have exhausted all the

treatments in T and have, therefore, observed all the values that Y can take on

for any unit. Once this is done, we can calculate all of the causal effects defined

in (2) for any pair of treatments. Unit homogeneity neatly eliminates the
fundamental problem of causal inference. It is one reason why the older lab-

based experimental methods worked well on material not subject to much
uncontrolled variation.

The assumption of unit homogeneity is sometimes disguised under the rubric

of ceteris paribus or 'other things being equal'. Ceteris paribus is usually evoked

for ideal (and unrealizable) experiments in which we vary only the factor whose

effect is of interest and somehow hold all other relevant factors fixed. We get

back immediately to the notion of distinct-but-identical units here because these

other factors are just ways in which the units can be non-identical. The problem

is that we can not ever really know what an the relevant factors are in any real

experiment, so the best we can do is hold fixed all the factors that we do know

about and which we can fix. I argue that in the experiments in which unit

homogeneity might hold, it does not really matter that the units 'appear' to be

identical. The crucial assumption is that the outcomes do not depend on which

unit is exposed to which treatment. The apparent similarity of units in terms of

their 'properties' and 'other factors' is irrelevant except insofar as it makes
plausible the assumption of the homogeneity of the outcomes on distinct units,

i.e., that equation (3) holds. In practice, the plausibility (and therefore the

utility) of the assumption of unit homogeneity is always a matter of degree and it

can rarely be expected to hold exactly. Even when it is only approximately true,

15
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it is a powerful inferential device.

Fisher's Null Hypothesis: Suppose we are willing to entertain the hypothesis

that none of the treatments have effects. For example, in an early article in

which R. A. Fisher set down some principles of design' for field experiments in

agriculture, (Fisher 1926), he makes the following statement about the apparent

productive value of treating a given acre of a field with manure:

What reason is there to think that, even if no manure had been applied, the acre which actually

received it would not still have given the higher yield? (p. 504)

This type of statement can be translated into another simple causal model

'mown as Fisher's Null Hypothesis:

Yit = Yj, for all i in U, (4)

that is, Yit does not depend on the treatment, t, in T that is applied. Note that

(4) also avoids the fundamental problem of causal inference in the sense that if

(4) were true, then having observed Yit1 for unit i and treatment t1, we

automatically know the value of Yit for all t in T. In this case, all the unit-level

causal effects defined in (2) are zero. This is why the hypothesis is called `null'--

the treatments have no effect On any unit. But note that the units may exhibit

any amount of 'uncontrolled variation' because the in (4) may depend, in an

arbitrary way, on i.

The purpose of Fisher's null hypothesis is quite different from the assumption

of unit homogeneity even though the two are formally quite similar--compare (3)

to (4). Unit homogeneity can be used to estimate unknown causal effects using

the data, whereas Fisher's null hypothesis is that all of these causal effects are a

particular known value--namely zero. If the assignment mechanism is of a
particular typerandomizationthen Fisher's null hypothesis has consequences



for the observed data and we may be able to conclude that these consequences

are incompatible with the data. This brings us to the well-known, and very large,

subject of testing statistical hypotheses and it would take me too far afield to say

more about it here, so I won't.

Random assignment: The function x can be determined in a variety of ways.

One very important aspect of comparative experiments is that the determination

of x is under the control of the experimenter; this is what 'experimental
manipulation' means within this model. If we use appropriately a randomizing

device such as the toss of a coin, the roll of a die, or a table of random numbers

to decide which treatment is applied to each unit, then x is said to be
constructed by randomization. I do not want to go into the fine points of the

many ways that randomization can be used to construct x. My purpose at this

point is merely to indicate how randomization fits into the overall model of

experimentation described here.

Probability: It is now time to get serious about probability. I use probability in

two ways. First, probability has already entered the discussion through the
construction of x via randomization. This is, I believe, a fairly insignificant use

of probability in this theory, though it has very significant consequences as we

shall see. Randomization is a physical act in which a known chance mechanism

is used in particular ways to construct the function x. When U is large, this

results in an x with certain known properties that I will discuss in more detail in

a moment.

Second, and most importantly, I also use the language of probability to
describe the population U in terms of x and Y. In particular, I use the notation

of expected values and conditional expected values to denote averages of the

values of Y over subsets of the units in U. For example, the notation

E( Yt)



denotes the average of Yit across all the units in U, and

E( yI x = t )

denotes the average value of yi among all those units in U for which xi = t
(the units exposed to treatment t). Note that in this expectation notation, I have

suppressed the index i because i is being 'averaged over'. The average value

of yi among all those units exposed to treatment c is denoted by E( ylx
). (For simplicity of notation I have just slipped into the two treatment case of a

treatment t and a control treatment c that I will continue to use throughout the

rest of this paper.)

My use of the expectation notation is, in fact, quite standard because
expectations alz population averages and I average over the population U.

While it does not come up until section 3, I also use the standard probability

notation to refer to the proportions of units in U that are in subsets of U defined

by x and Y in various ways. Thus, the probability that I use here has a simple

frequentist interpretation in terms of proportions of units in U. 'Probability' in

this model is simply another name for 'unit inhomogeneity'.

ACES and FACES: When unit homogeneity is implausible, the fundamental

problem of causal inference must be addressed in other ways and this is the

great contribution of the introduction of randomization to the design of

comparative experiments.

We begin by changing our target and considering causal parameters other

than the basic unit-level causal effects in (2). This leads easily to the idea of an

Average Causal Effect or ACE. There are several ways to average the unit-

level causal effects to get interesting causal parameters. I describe only one of

them. Set

ACE=E(I't - Yclx =t). (5)
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The ACE in (5) is the average of the causal effects of t relative to c across
the units exposed to treatment t. It can be thought of as a measure of the
'effect of the treatment on the treated units'. It is worthwhile to change (5) into

a difference of two expectations, i.e.,

ACE = E(Ytlx=t) - E(YC Ix =t). (6)

The first expectation in (6) is easy to interpret. It is the average value of Yt
over all the units exposed to t, i.e.,

E(YtIx=t) = E(ylx=t), (7)

and the expectation on the right-hand-side of (7) involves only the data ayi,

x-)1 and can, therefore, be computed from it. But, the second expectation in (6)

is counterfactual in the sense that it is the average of the values of Yc across all

the units exposed to t (and for which the value of is inherently unknown due

to the fundamental problem of causal inference). I have heard the
counterfactual expectation, E( Yc Ix =t), referred to as an 'oxymoron',

but I view it as a mathematical formula for the single most important
quantity that arises in causal inference. Without introducing it or equivalent

notation there is simply no way to describe precisely many important causal

parameters that arise in practice.

Before continuing, I will define the FACE or Prima Facie Average Causal
Effect that is associated with the experiment:

FACE=E(ylx=t)-E(ylx=c). (8)

The FACE is the average of the observed outcomes for the units exposed to t

minus the average of the observed outcomes for the units exposed to c. It can

be put into a form that more closely resembles the ACE by using Y instead of
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y:

FACE=E(YtIx=t) - E(Ydx=c). (9)

Neither of the two expectations in (9) are counterfactual in the sense used
above because both of them are based on the data, ffyi, xi)]. The FACE is a
measure of the association of y and x across the units in U. It is the
'correlation' in 'correlation is not causation'. The ACE is a causal parameter,

because it is determined by the causal effects, and represents the 'causation' in

the time-honored, correlation/causation distinction.

This brings us to a basic question of causal inference. When does the FACE

(which we can always calculate from the data) equal the ACE (which is a
causal parameter and which involves an inherently unobservable counterfactual

conditional expectation)? Setting (9) equal to (6) yields the following
fundamental condition:

E(Yc. Ix =t) = E(Yclx=c). (10)

Equation (10) is a statement of the lack of dependence between the variable

Yc. and the variable x across the units in U. As such it holds if 174 and x are

tatiticallv endent across the units in U. This brings us back to the

process of constructing x using randomization.

A variety of theorems in probability theory have the following form: if U is

countably infinite and x is constructed by randomization (including, but not

restricted to, simple coin flipping) then x is independent of Y across the units

in U, for almost all realizations of the randomizing process. This means that

when U is a large, but finite, population, randomization insures that (10) is
approximately true no matter how Y varies across the units, and the larger U

is, the more exactly this approximation holds. This fits well with the
practitioner's intuition that randomization has the greatest force when tl-e
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number of units being randomized to treatments is large. The practical matter of

how close the approximation holds is solved by the usual statistical tools of
standard errors, etc., and is an important, but merely technical, detail from the

point of view described here.

The effect of randomization can be described in a slightly different but related

way. Table I displays a simple hypothetical example of the model in the case

where Y is dichotomous ( e.g., 1 = the unit lived, 0 = the unit died) and there

are only two treatments, t and c. Table I lists a few of the units of U and their

corresponding values for all the quantities that arise in the model. Unit 1 lives

Y/ t = 1) if it is exposed to t but dies (Y/c = ) if it is exposed instead to c.

However, for unit 1 x1 = t and, therefore, unit 1 is observed to live, i.e., yj = 1.

Similarly for the other units listed in Table I.

(Insert Table I about here)

Randomization can be thought of as producing two simultaneous random

samples, one from the Yt column and one from the Ye column in Table I. From

this perspective, the average y-value for the units exposed to c is an estimate

of the column average of the Yc column in Table I (i.e., E ( Yc )). However,

randomization also makes the (unobserved) Ye values of the units exposed to t

a random sample from the Yc column of Table I and hence their average value

(i.e., the counterfactual expectation in (6)) also estimates the average of the

entire Yc column of Table I. From this point of view, equation (10) is
approximately true under randomization because both sides are estimates of the

same quantity, i.e., E ( Yc. ), and these estimates become more accurate the

larger U is.

Thus, randomization is a powerful technique. When the number of units in the

study is large, it makes an inherently unobservable causal parameter (the ACE)
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approximately equal to a quantity that is easy and natural to compute from the

observed data (the FACE). Under randomization, equation (10) holds
approximately so that 'correlation' and 'causation' essentially become one.

Note also that the use of randomization to estimate the ACE does not
depend on assumptions about any causal model for Y (as unit homogeneity
does). To reiterate a statement made earlier, one of the contributions of
statistical methods for making causal inferences in experiments is to replace

untestable causal models (such as unit homogeneity) by features of the
experimental design (such as randomization) that are under the control of the

experimenter. This is not done without cost, of course. The cost is that we are

no longer making inferences about the individual unit-level causal effects in (2).

The inferences are now about the ACE's which are averages of the unit-level

causal effects.

Averages have both strengths and weaknesses. Their biggest weakness is

that an average by itself says little about the individual values that make it up.

The patient and his or her physician are interested in the patient's own causal

effect, but a research study will often result in information about the ACE of

which the patient's causal effect forms only a tiny part. For many problems,

however, averages are very useful. In public health, the ACE is often the main

causal parameter of interest.

I argue that unit homogeneity (for simple 'deterministic' phenomena) and

randomization (for phenomena exhibiting uncontrolled variation) are the twin

inferential pillars of experimental science because, in different ways, each can

be used to solve the fundamental problem of causal inference. Neither is
guaranteed to succeed, of course--unit homogeneity may not be plausible in

many situations, randomization is impossible to implement in many studies, and

the ACE may not be a relevant parameter in some cases.

Non-experimental studies: 'Observational studies' or 'non-experimental
studies' are statistical terms-of-art describing research where the goal is to
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estimate the causal effects of treatments but for which unit homogeneity is
implausible and randomization is infeasible. The active experimenter is replaced

by the passive observer who tries to draw causal conclusions without having

much control over the data generation process and in the face of significant unit

inhomogeneity. For example, a causal finding based exclusively on non-
experimental research is the link between cigarette smoking and lung cancer.

Detailed discussion of these important types of studies goes beyond the
scope of this paper. I simply make a few points about them here, and refer the

interested reader to the references mentioned at the end of section 4 for more

details.

First, for reasons that have never been clear to me, many of the examples

used in philosophical discussions of causation and related topics are based on

observational-study-like examples rather than on comparative experiments. It

seems to me that giving an account of causation in the context of an experiment

where, in practice, there is confidence in the conclusions is logically prior to

attempting to discuss causation in more complex situations where, again in

practice, there is always less confidence in the conclusions. That is why I have

emphasized experiments in this discussion.

Second, in observational studies, the identification of the units and the
outcomes is usually unambiguous. However, it is sometimes difficult to
determine vihat treatment was applied to each unit and whether or not they

were applied prior to the determination of the outcomes (in which case Hume's

'temporal succession' becomes a non-trivial issue).

Third, the fundamental problem of causal inference and the consequent a

priori potential inequality between the ACE and the FACE poses a major

problem for observational studies. In general, in an observational study there is

no assurance that equation (10) holds. To proceed with their analyses, one must

make assumptions that are closely related to equation (10) but without any real

basis for these assumption in the design of the study (such as provided by
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randomization). An example of such an assumption is 'strong ignorability'

discussed in (Rosenbaum 1984a). All is not hopeless, of course, but the
measurement of causal effects in non-experimental studies always has an

additional level of uncertainty in it beyond that determined by sample size. This

additional uncertainty is due to our natural lack of conviction in the validity of

untested and often untestable assumptions about the assignment of units to

treatments. A key tool in the analysis of observational studies is 'sensitivity

analysis' in which we express this additional uncertainty by recomputing
estimates of the causal effects under a plausible variety of untestable
alternatives to equation (10).

Finally, in an observational study, the question of 'what can be a cause'

arises. In an experiment, the causes are the treatments. In observational studies

the notion of an experimental manipulation can become confusing.
Consequently, estimates of 'causal effects' are sometimes sought in cases
where there is ambiguity in what they mean, e.g., the 'causal effect' of gender

on test performance, or the effect of 'nature' versus that of 'nurture'.

3. Probabilistic Causation.
The whole purpose of the formal model for comparative experiments is to

accommodate 'uncontrollable variation', so it should be no surprise to find that it

also gives rise to a type of probabilistic theory of causality that addresses many

of the same issues that concern Suppes. I first describe this theory and then

discuss its relation to Suppes' work.

?robabilistic causation without probability: To make things simple, let us

assume that Y is a 0/1 variable so that we can talk about events occurring or

not in terms of the values of Y. For example, suppose the units are patients in a

medical study and Y = 0 denotes death within some specific future time period

while Y = 1 denotes survival over this time period. Suppose further that we

have two treatments, t and c, with t denoting a new treatment and c a
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control treatment, either of which can be applied to each patient.

We can conceive of grouping the units in U into four sets depending on the

joint values of Yt and Ye ; we can not actually form these groups in practice, of

course, due to the fundamental problem of causal inference, but it is useful to

discuss them. The four subsets of U are

and,

All = : Yit= 1 and Yic = 1 j,

A10=0:Yit= I and Yk = I,

A01= ti: Yit=OandYk=//,

A00=0:Yit=0andYjc=0].

Then let P(1, 1), P(1, 0), P(O, 1) and P(0, 0) denote the pLoportions of units

that are in these four subsets of U . These four proportions (i.e., probabilities)

can be described as follows:

P(1, I) = the probability that a patient hits_ throtIa_lout the period no matter

which of the two treatments he or she receives,

P(0, 0) = the probability that a patient dies within the period no matter which of

the two treatments he or she receives,

P(I, 0) = the probability that the new treatment causes a patient to live during

the period,

P(0, 1) = the probability that the new treatment causes a patient to die during

the period.
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The last two 'causal' probabilities address constant conjunction in a sense

that is quite compatible with Hume's intent. For example, if

P(1, 0)=1,

then the presence of the cause t is always followed by survival, and the
absence of the cause t is never followed by survival. Non-constant conjunction

or 'probabilistic causality' occurs when either P(1, 0) or P(0, 1) is strictly
between 0 and 1. In other words, in terms of this model, probabilistic causality is

identical to unit inhomogeneity and the rejection of Fisher's null hypothesis.

Thus, the model for experiments makes it easy to talk about probabilistic

causality. The only price we pay for this is that we must refer to sets such as

A 10 that can never be formed in practice. This is closely related to the
counterfactual language that has been used to describe the causal relation, for

example (Lewis 1973).

This price may be too large for an extreme Positivist, but it is interesting to

observe that a combination of randomization and a causal model can allow us,

in certain circumstances, to draw plausible inferences about these four sets that

we can not actually form in practice. Here is how this analysis goes.

'Observing' the unobservable: First of all, it is useful to express the joint
distribution of Yt and Yc. (over U) as a two-by-two table, as in Table

(Insert Table II about here)

The idea is that if U is large, then under randomization we can estimate the

values of the margins of this joint distribution, i.e., Probfft = 11 and Probff
= 1j, and then we use a causal model to allow us to infer the values of the

'insides' of this two-by-two table (i.e., the P(i, ifs i,j = 0,1) from its margins.

The discussion in section 2 shows that we can use the FACE to estimate the

ACE defined in (5). However, under randomization x is approximately

independent of both Yt and Yc across U, so it follows that we can drop the x
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in the conditioning part of the definition of the ACE and hence,

ACE = E( Yt ) - E( ). (11)

However, because Y is a 0/1 variable, we have the following basic fact from

Table II:

E( Yt ) = Prob.( = 1 1 = P(1, 1) + P(1, 0), (12)

E( Yc ) = Probl Yc = 1 = P(1, 1) + P(0, 1). (13)

Hence, combining (11), (12) and (13) we can express the ACE in terms of the

'causal' probabilities P(1, 0) and P(0, 1), i.e.,

ACE = P(1, 0) - P(0, 1). (14)

and,

Equation (14) is the contribution of randomization to the analysis.

Now suppose that from some a priori consideration it is plausible that the

treatment does not cause death in the sense that we regard it as impossible for

exposure to t to lead to death but exposure to c not to, i.e., Yu = 0 but Yic =

1. This might be a plausible assumption if t were an improved version of c or if

c involves a hazard that could lead to death and t does not involve this hazard.

In Table I, this assumption would eliminate such units as unit 5. The assumption

can be formulated in the model as

P(0, = 0. (15)

Equation (15) is the contribution of the causal model to the analysis. From (14)

and (15) we have

ACE P(1, 0). (16)
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Therefore, if we assume that the causal model (15) holds and include random

assignment in the experiment's design, then the FACE is an estimate of the

ACE and, therefore, of P(1, 0). Thus, while we cannot actually form the set

A10 we can still learn about its frequency in the population U, (a) using a
causal model that may be plausible from other considerations, and (b) including

randomization in the experimental design. We can then find all four of the P's in

Table H.

Finally, I should emphasize that the probability, P(1, 0), that t causes
survival should not be confused with the probability involved in some stochastic

mechanism that might connect t to survival. Such a mechanism might or might

not be the reason why P(1, 0) does not equal unity, i.e., why there is unit
inhomogeneity. (Indeed, a stochastic mechanism might be proposed to account

for the value of P(1, 0) in some population, U.) This analysis and the model on

which it is based is entirely silent about that possibility. All of the 'probability' in

this analysis arises from unit inhomogeneity. The source of unit inhomogeneity

may be an underlying stochastic mechanism 'within' each unit (stochastic units),

or it may be deterministic differences between the units that are not reflected in

the data that has been collected about them prior to their exposure to the
treatments. Again, I argue that this agnosticism about stochastic versus
deterministic sources of unit inhomogeneity is irrelevant to this theory because it

is about measuring the effects of causes and not about identifying causes or the

mechanisms that lead from cause to effect.

Suppes' theory of probabilistic causation: Suppes intends his theory to
accommodate the possible lack of constant conjunction of cause and effect

while retaining temporal succession from Hume's analysis of causation. As far

as I can tell, spatial and temporal contiguity play no direct role in Suppes'

analysis.

Roughly speaking, Suppes proposes that one event is the cause of another
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that occurs later in time if the occurrence of the first event increases the
probability of the occurrence of the second, and there is no third, temporally

prior, event that we can use to 'factor out' this 'probabilistic association'
between the first and second events.

Suppes' theory is much more general than the one described above. He uses

the language of probability theory for events that occur in time (stochastic
processes) but is not specific about the probability space or the nature of the

events beyond their temporal order of occurrence. The essence of his theory is

to identify when one event is a genuine (probabilistic) cause of another. His

three basic definitions of prima facie, spurious and genuine causes are given in

Si, S2. and S3.

(S1) If r < s denote two time values, the event Cr is a prima facie cause of

the event Es if

Prob{ Es I Cr > Prob{ Es }.

(S2) Cr is a spurious cause of Es if Cr is a prima facie cause of Es and for

some q < r < s there is an event Dq such that

(a) Prob{ Es I Cr,, Dq = Prob{ EsI Dq }, and

(b) Prob{ Es I Cr,, Dq } Prob{ Es I Cr }

(S3) Cr is a genuine cause of Es if Cr is a prima facie cause of Es, but Cr

is not a spurious cause of E.

Condition S1 says that given that the causal event has occurred, the
probability that the effect will occur is higher than it would be had the causal

event not occurred. A prima facie cause exhibits a positive probabilistic
association with the effect.
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Condition S2 is what Suppes means by a temporally prior event 'factoring

out' the association between a prima facie cause and the effect. Part (a) of the

condition is the condition& independence of the prima facie cause and the effect

given the other event. This is also called 'screening off (Dq screens off C,.

from Es). Part (b) requires the screening-off event to increase the probability of

the effect beyond the value attained by conditioning on the occurrence of the

original prima facie cause alone, i.e., given the occurrence of the prima facie

cause, the screening-off event must act like a prima facie cause itself.

Condition S3 says that if a prima facie cause is not spurious in the sense of

S2, then it can be elevated to the status of a genuine cause.

The crucial part of these definitions is part (a) of the definition of a spurious

cause. It also appears in many probabilistic analyses in the philosophy of

science, e.g., Salmon's definition of statistically irrelevant explanations, (Salmon

1989). For other references to similar uses of 'screening off' see (Skyrms 1988).

Part (b) is more problematic and may not be important. In (Holland 1986), I give

some evidence that it may be inessential to the notion of cause. Suppes'
conditions S1 and S2(b) both concern positive association between causes and

effects. For the most part, positive versus negative association is an inessential

artifact of the labeling of outcomes and treatments.

There is a certain unattainable quality to Suppes' definition of a genuine
cause. In order to show that a cause is genuine, we need to be able to show

that there is no event D that satisfies the condition S2. In practice there could

be an infinite number of potential Dq's, and ruling them all out might be
impossible. See (Good 1962) for a different criticism of the use of screening-off

events in definitions of probabilistic causality. For a criticism of Suppes' theory

see (Otte 1981).

4. A Comparison of the Two Theories
I must admit that I stole the 'prima facie' in rill

effect (FACE) from Suppes' definition of prima facie cause because I believe
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they represent closely related ideas. Both are surface appearances. The FACE

measures the empirical association between treatments and outcomes. If the

FACE is positive in the medical example given earlier, then t is a prima facie

cause of survival in Suppes' sense.

Except for this, the two theories diverge widely because, I argue, the
experimental model focuses on the measurement of effects, while Suppes'

theory follows the ancient tradition in philosophy of defining what it means to be

a cause of something.

Differences in the permanence of results: The problem of the
unattainability of the status of being a genuine cause is a difficulty inherent in the

approach of identifying causes rather than of measuring effects. For example, it

also appears in a different guise in the econometric notion of Granger causality,

(Granger 1969), (Florens and Mouchart 1985), in which conditions are given to

define when one variable is the cause of another. Granger causality is an
approach similar to that taken by Suppes. Granger and others attempt to get

around the problem of unattainability by assuming that the set of all the possible

D 's is limited by available information so that it can be exhaustively searched.

The status of being a genuine cause now ceases to be unattainable and
becomes merely provisional. A genuine cause can be reduced to a mere
spurious cause by new data (i.e., a newly discovered Dq).

In practice the identification of a cause often has a provisional quality about

it. 'A is a cause of B' is often simply a theoretical statement used to summarize

the current state of our ignorance. On the other hand, 'B is an effect of A' can

be an empirical finding that does not change or become false as knowledge of

the subject increases. As I am fond of saying,

old experiments never die, they are just reinterpreted.

I intend this paraphrase to emphasize the permanence that experimental results
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often have, in comparison to that of proposed causal mechanisms. Of course,

the status of old experimental results can change in the light of new
experimental findings. For example, the introduction of single and double

'blindness' into experiments on human subjects had a profound effect on the

interpretation of previous research on the treatment of pain in medicine,
(Beecher, 1966).

In non-experimental research the aim is often to measure causal effects with

the recognition that because randomization is infeasible and unit homogeneity is

implausible the measurement of an ACE by a FACE is biased. In this type of

research, older (more biased) estimates of an ACE are replaced by newer (less

biased) ones as the quality of the non-experimental research improves. While it

might be argued that this is a lack of permanence in the measurement of the

effect of a cause, I argue that it is more appropriate to view it as an
improvement in this measurement; an improvement that is necessary only
because of the infeasibility of a randomized experiment that would make it

unnecessary.

Differences in the use of probability: Another important difference
between the theories is the way in which they use the language of probability.

This is possibly best seen in the analysis of probabilistic causation in the case of

a single unit, say the patient Jones. In this special case, the 'events' in Suppes'

theory all describe various aspects of Jones and the things that happen to her.

The probability that is invoked in his theory refers to Jones alone and not to

some population to which Jones might belong. Jones is viewed as a stochastic

being, her survival being only probabilistically related to her exposure to the

treatment t.

The situation described by the model for experiments is very different.
Suppose that Jones is unit 1, then there are just the values of Yip ric, and xi.

There is nothing said about Jones being stochastic or not. Under exposure to t

the outcome rit would be recorded, under exposure to c the outcome Yi
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would be recorded, and x1 is whatever it is. We may introduce probabilities for

Jones by considering various subpopulations of U to which Jones belongs. For

example, suppose that Jones was exposed to t and survived. Can we say
anything about the probability that Jones actually survived because she got

treatment t in the experiment? Under some circumstances the answer is yes,

as I now demonstrate.

Continuing the medical example from section 3, suppose that from a large

randomized experiment comparing t to c we have established that

Probfft= 11= .4 and Prob(Y c=1)= .1

using the methods mentioned in section 3. The ACE is then equal to .4 - .1 = .3.

SUppose, as before, that we are willing to assume that P(0, 1) = 0. We can

then interpret the ACE as P(1, 0) and conclude that t causes 30% of the units

in U to survive, i.e., that the set A10 contains 30% of U, including Jones. We

know a bit more about Jones, namely, that she was exposed to t and she
survived. That is, we know that she is in the first row of Table H. She could be

in either A11, the patients who survive regardless of exposure to t or to c, or

in A10, those patients for whom t causes survival. Hence, we might consider

answering the question "Did t cause Jones to survive?" by reporting the
conditional probability formed by dividing P(1, 0) by the sum of it and P(1, 1),

i.e., dividing by Probn't = 11. The answer will then depend not only on the

value estimated for P(1, 0), but also on the experimental estimate of the
marginal probability, Probn't = 11. In this example,

ProblYt = 11= .4.

Hence, given that Jones got treatment t and survived (i.e., that she is in the first

row of Table H), the probability that Jones survived because she got treatment

t (i.e., that she is also in the second column of Table II) is .3 divided by .4 or
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75%. If another patient, say Smith, received treatment c and died, the
corresponding probability that Smith died because she received treatment c is

.3 / .9 = 33%.

This is unit inhomogeneity and probabilistic causality in all their glory,

because, while we can say something about individual cases, we typically obtain

conditional probability statements whose probabilities are far away from 1 or 0.

The relative risk: It is useful here to point out an interesting connection
between the conditional probability just computed and a 'causal' parameter that

appears in biometric studies called the relative risk. The relative risk is the ratio

of the probability of the outcome under t to the probability of the outcome under

c, i.e.,

R = Probn't = 111 Probffe= 11.

(In biometric applications, the outcome coded '1' is usually death rather than

survival as used here, hence the term 'risk' in relative risk.) The relative risk is

the parameter used in statements such as "smokers are 10 times more likely to

die of lung cancer than are non-smokers".

If R > 1 then, following the calculations made above, it is easy to show that

the conditional probability that t causes survival among the surviving units

exposed to t is (R - 1) 1 R. (Note that I am still assuming that P(1, 0) = 0.)
Hence, for a small relative risk, say R = 1.01, this conditional probability is also

small, i.e., 1%. When the relative risk is big, say R = 10, then this conditional

probability is also big, i.e., 90%. In the above example, R = .4 / .1 = 4 and (R -

1) 1 R = 3/ 4 = 75%.
Differences in the role of null effects: A third difference between the
model for experiments and Suppes' theory is the use of 'screening off'. For
Suppes screening off plays an important role in determining when there is only a

spurious statistical association between 'cause' and 'effect'. The model for
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experiments does not involve the use of probability in this way. Instead, to

describe everything causal it uses functional relationshipsthe function V that

associates a value with each pair (i, t) and the mapping x that describes the

assignment of treatments to units. Probabilities are proportions of units in the

studied population and nothing more. I formed a conditional probability in

discussing the probability that t caused Jones' survival, but this is not a
fundamental aspect of the model, only a natural consequence of using it. Indeed,

I think that the strength of the model for experiments is its simultaneous use of

functional relationships and of unambiguous population frequencies as
probabilities to express all the items of interest. The language is richer than that

of probability alone, and more can be said using it.

The role of `no relationship' or 'spuriousness', while fundamental to the

Suppes' theory, appears in the model of experiments in a fairly minor role, as

Fisher's null hypothesis. The null value, zero, is only one of many possibilities, no

one of which plays a dominant role in this theory. Again, this difference can be

attributed to the differing goals of the two theories. When measuring the effects

of causes, null effects are only a special case in the range of all possible effect

sizes. On the other hand, identifying a genuine cause means being sure that its

apparent association with the effect cannot be explained away by any other

temporally prior event.

In summary: The 'probability-free' account of probabilistic causation has many

of the same aims as other such theories, and it can accomplish much of what

these other theories do as well. It is only one application of the general model

for experiments described in section 2 and it illustrates that remaining
uncommitted as to the nature of the causal connection does not mean that a

detailed analysis of many causal questions is oat of reach. It is characterized by

a focus on measuring the effects of causes and by formal notation that uses the

language of both functional relationships and frequentist probability.
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The following references may be of interest to those who want more
information about the model for experiments and its application to a variety of

problems in causal inference.

General introduction, (Holland 1986); foundations, (Rubin 1974, 1978, 1980,

1986, and 1990a); history, (Neyman 1990), (Rubin 1990b); criticisms, (Glymour

1986), (Granger 1986), (Kadane and Seidenfeld 1990), (Lund 1991);

observational studies, (Rubin 1974, 1977), (Holland and Rubin 1983),

(Rosenbaum and "_lubin 1984), (Rosenbaum 1984a, 1984b, and 1987);

retrospective studies, (Holland and Rubin 1988); indirect causation and path

analysis, (Holland 1988a, Sobel 1990, 1992); employment discrimination,
(Holland 1988b); other related material and extensions, (Pratt and Schlaifer

1984, 1988), (Efron and Feldman 1991), (Robins 1985, 1986, and 1987).
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Table I

A Hypothetical Example of the Formal Model in the
Case of a Dichotomous Outcome

Unit i Yit

1 1

2 1

3 1

4 0

(?) 5 0

6 1

Yic

0

0

1

0

1

1

yi

1

0

1

0

0

1



Table II

The Joint Distribution of Yt and Ic

Yc

1 0 Total

Yt

P(1, 1) P(1, 0) Probp't = 11

P(0, 1) P(0, 0) Prob pc = 0}

Total Prob{17, = 1} Prob{Y = 0} 1.0

'I 6


